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Passive localization:

A nmodel-based approach

J.V. Candy and E.J. Sullivan cC .'-"

Abstract: Passive localization by use of propagation models, sometimes
called Matched Field Processing' is usually carried out in three steps. First
some appropriate model is selected, then model parameters (usually taken
from archival data or from auxiliary measurements) are introduced into tile
model. Finally acoustic measurements of the field radiated by the source
to be located are made - which, in combination with the properly pa-
raineterized model, allow a solution for the source coordinates to be car-
ried out. Here we use such a model-based approach in conjunction with a
normal-mode model. By coupling the procedure with a parameter estima-
tion/identification scheme and using a horizontal (towed) array instead of
the usual vertical array, we show that the model parameters need not be
known a priori in order to carry out the solution. This is in contrast to the
standard approach in which the modal functions and wavenumber must be
a priori known in order to solve the problem; sufficient information to de-
termine the range of the source can be inferred directly from the measured
data themselves. Using a sophisticated acoustic propagation model to gen-
erate simulated data, coupled with various array processing techniques, the
feasibility of the approach is demonstrated. The esssential problems associ-
ated with the technique are found- to-be fi) the need for a large aperture for
suffi-dently arc- u-ate wavenumber estimation, and (2) the need for a general
sensitivity study in order to evaluate the efficiency of the algorithm.

Keywords: acoustic propagation model o array signal processing o
beamforming _o model-based approach o normal modes o optimal
constrained estimation o range estimation o wavenumber estimation, --
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1. Introduction

rhe utilization of propagation models to localize sources is well established [I 6I .
Most techniques rely on experimental ieasurements (e.g. of sound velocity profile)
to establish model parameters. Applications of these techniques evolve fronm seisziics
(where it is used for the location of earthquake epicentres or underground explosions)
radar (for target location), and acoustics (for sonar source localization). Here we
concentrate on the acoustics application.

The localization of an acoustic source using measured data in conjunction with
a propagacion model is usually referred to s Matched Field Processing and has
been receiving increasing attention in recent years. The technique involves bringing
measured acoustic data, most commonly from a vertical array, into consistency with
the prediction of a propagation model. The source coordinates are then taken to he
those that best match the data.

There are generally two approaches to tie probleim. The first involves a search over
forward solutions to the propagation model. It was in this approach that the ter-n
Matched Field Processing was first applied. It is best described as the solution to
an inverse problem by forward modeling. Suppose the range and depth of a point
acoustic source are to be estimated from the data received on a vertical array of
hydrophones. The field at the array, as predicted for a source location at soiiie
arbitrary point on the range-depth grid, is computed for an exhaustive set of those
points. Each of these computed fields is then compared to the measured field in
some manner. For example, the estimator could be the correlation between the
measured and the predicted field. This estimator is then computed for all range-
depth combinations and plotted on a range-depth map. The location of the best
estimate on this map is then taken as the estimate of the location of the source.

One example of such an estimator is Bucker's Detection Factor [2]. This can be
written as

D({s}) = P({})RPm({a}), (1.1)

where R is the covariance matrix of the measured field, PM({c}) is the field as

predicted by the model for source coordinates {f}, and P1 is the complex conjugate
transpose.

For a vertical array of L hydrophones, PM({s}) is an L-dimnensional complex vector
and R is L x L. (It should be noted here that in Bucker's original definition the
diagonal of R is removed.) Equation (1.1) can be thought of as the power output of
a conventional beamformer 'steering vector' PM ({n}).
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The detection factor is maximum when the modeled field equates to the measured
field. This can be seen as follows. Assuming that the estimate of the covariance
matrix is obtained by a time average (..), we have

pt IM P,(I'I')t'M, (12)

where we have dropped the explicit dependence on {o} for clarity. Since P, is
deterministic (for the crpo of a deterministic model), Eq. (1.2) can be written as

D - (P11 PPt P,, ((P', P)(PfI P)1). (1.3)

lv the Sthwartz ineqtality the inner prtduct t'tM P is ntaxinioin when cPM = P,
where c is a constant.

Other estimators have been used but most are basically a modification of Eq. (I.1).
The disadvantage of this approach is the scale of the computation involved. However,
this is outweighed in many situations by the fact that there is no limitation on the
degree of sophistication of the model, since only forward solutions are used.

The second approach, known as the direct inversion technique, is based on the fact
that the normal-nmode itodel of propagation perinits a set of liniear vqtiat iols that
can be directly inverted [3, 6).

A more complete overview of these techniques can be found in [3]. Both of these
techniques are therefore model-based processing schemes that contain three coln-
ponents: data, model and model parameters. The model parameters are usually
derived from a secondary set of measurements or from archival data. The proce-
dure, then, would be to select a model that can be assumed to faithfully represent
the physics of the situation. Next some 'best' set of parameters is determined, either
oy ,.i, auxiliary measurement or, more commonly, from archival data. In the case
of the normal-mode model these parameters include the sound velocity profile, the
depth of the ocean, and the ocean bottom conditions. The parameterized model is
then used in conjunction with the measured data, usually from a vertical array, to
compute the source location.

In this report we present a technique that differs from the above approaches in two
ways. Firstly, a horizontal (towed) array is used to perform the measurements. Sec-
ondly, the necessary model parameter information is estimated directly from the
data. Thus we have a scheme that is best described as model-based processing with
identification [10). The array data are spectrally analysed spatially by a 'beam-
former' which can be of any type (i.e. conventional, maximum-entropy, etc.), and
from which the wavenumbers associated with the normal-mode model are estimated.
Given these wavenumber estimates, the array measurement data can then be used
to provide a direct estimate of the range of the source. What is surprising is that the
sound velocity profile, the ocean depth and the bottom properties are not necessary.

-2-
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In other words, the horizontal wavenumbers carry sufficient information concern-
ing these parameters to provide a solution. The technique developed follows an
eigenvector decomposition approach [12-14[.

In Sel. 2 we briefly summnarize the propagation an(l measiireniit in dels using e
processor. The wavenumber eigentechnique is developed along with the range esti-
inator in Sect. 3. In Sect. 4 we discuss the results on simulated data and summarize
the results in Sect. 5.

3-
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2. Propagation and easuiremaent models

Acoustic energy fron a point sourer, propagating over a long range r (r - h wlwr,,
h is depth) towards a receiver cai Ie modeled as a trapped wae ciiaracterized by
a waveguide phenomenon. For a layered waveguide model with sources on the z (or
vertical) axis, the pressure field p is symmetric about z and therefore is governed by

the cylindrical wave equation, which is given by

0
2

11
5r~p(r,2,t } f r-rP(r, ,t) 4 pr:t g~ ,r:t (2.1)

The solution to this equation is accomplished by using the separation of variables

technique, i.e.

p(r, ,t) - (r)O(z)T(t). (2.2)

Substituting Eq. (2.2) into Eq. (2.1), assuming a iharnionic source, wp have

T(t) ','' (2.3)

And defining separation constants K , K- we obtain the set of equations

d 2  I dd r 2 u ( r + r- T (r ) K ' zn (r ), (2 .4 )

d(
2

K 
2  W '2

(2.6)C2(-), '2

K
2  

2 2(2)= ' + r,, (2.7)

where the solutions to these relations describe the propagation of the acoustic pres-
sure in cylindrical coordinates, assmning the harmonic source of Eq. (2.3) and the

speed of sound a function of depth c = c(z).

Following Clay and Medwin [7j, the solution to the range-dependent relation of
Eq. (2.4) is given by the approximation to a cylindrical Bessel function as

2_ =--- .. (2.8)

which shows that the waves spread radially from the source and are attenuated by

4-



SACLANTCEN SR-138

The depth relation of Eq. (2.5) is an eigenvalue equation in z with

0, in 1 .. ,.N+0,: a ,(io) ,,(z) 0. in I... V. '

whose eigensolutions {,,,(:)} are the so-called modal functions and K, is tlif wave-

number in the :-direction. Theq, -u1utions obviouisly depend on the sound velocity
profile c(z) and the boundary conditions at the surface and bottom.

Using the orthogonality property of the modal functions [7], i.e.
h

pOOr.( )'t(Z)d -,b(In 7), (2.10)

with po the water density and v,,, a normalization factor for a point source located
at z,, we can expand the source depth pressure dependence on z as a sum of eigen-

functions given by
N

00P~z))o,() (2.11)

Coupling these solutions to the dispersion relaticn of Eq. (2.7), we obtain the total
wavenuumber as

S(in) 2 
-- Kt(f(m) 4 Kz(T), m - 1 .. , N, (2.12)

where K, and K. are the respective wavenumbers in the r- and z-directions, c is the

depth-dependent sound velocity profile, and w is the harmonic source frequency.

If we also incorporate propagation losses (in the r-direction), then the model wave-
numbers become complex with , - K, + ja, in Eq. (2.8). The solution of the
wave equation with boundary conditions is the product of Eq. (2.2) and the acoustic
pressure is the sum over all modes as given by [7]:

p(r, z, t) = aoeij t - '
/4

) 
N POOi(Ze)O?(Z) ),j., (2.13)

Here a0 is the source strength.

For our purpose we are concerned with the localization of the source, and therefore
we remove the time dependence, normalize units, and obtain the acoustic pressure

propagaton modelt

A more detailed description of this model, which is used for simulation purposes in Sect. 4,

is given in [15].

-5-
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,- eV

wh,,re p is the acojustic pressure, p)_ is the inth intial ",tih at - and .:,, K,()

is the hirizontal wavonumber for the ,nth uiotlo and r is the hit riz(mtal range. In

vector form this is

p(r, ) L e, Nz(t) 
s

,
r

'
,
1

s( N )r .. (2.15)
LON.( Z7.)N :)" -I N)r/ ,-N )rJ

or

p(r, z) - '(r)6(r, z). 2. )

We will assulme that the acoustic pressure is sampled horizontally through an ark ay
of L sensors as shown in Fig. 1. The total range from the source to tile ith senso)r is
given by

where r, i- the horizontal sensor location and r, is t ho rang, to) tile first hydrophon
(i.e. the hydrophone closest to the source). Substituting pi for r ill the propagation

model and using this relation, we luve

N Z) - r(Z) nt(r. 4 jI € r(,)(,, (2.17)
PCp"-z) Z ¢"(-")¢'"(Z) vanl)r, + r)

Assuming that r, > r,, the model can be simplified, resulting in

N e

p(pi,z) > 4In(Z,)&,(z) e"' 
)  

i .... L. (2.18)

Expanding this expression we have

P(PL, Z) 'Jc '( )'l ' eJ' (N)lcf (:,)<b,(z)eJ(-,tt)±Jn,(I )),, / v/r(1)t,1Ax I"Z

PN(Z,)~, N(Z)C-r(N)+ JnN))
' 

/ -N)

i n - ,m nu ~ nnn nmunuu -6 -
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i=iL_

P rs• r,

Fig. 1. Configuration of L-element array which spa-

tially samples the radiation from the acoustic source

located at depth Z, and range r,.

which can be written succinctly as

p(r, z) = D(r)d(r0, z), (2.19)

with p E CLxl,D E CLx ' , and 0' E CNxI. D is called the direction matrix with

elements d_,, = eJ"r(")'- and can be defined in terms of row or column vectors as

D(r) := [d(Ki)...d(ICN)] = i • (2.20)

[d'(rL)J

The measurements will be contaminated with noise in the practical case, and there-
fore we assume the measurement model:

p(r, z) = D(r)_(ro, z) + _(r, z), (2.21)

where ( is assumed spatially white with variance R,.

Proceeding further, let us analyse the information contained in these measurements.

-7 -
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Post-multiplying by the hertnitian conjugate' and taking expected values, we have

E {p(r, z)pt (r, z)} D(r)E I 0(r,, z)Ot(r., :)D'(E_) + E --)r, ) (r, z)}

or simply
R,,, = D(r)Ro*,Dt(r) + R_. (2.202)

Since there are precisely N niodes characterizing the source, we have

rank [D(r)R,,OD t (r) = N < L. (2.23)

Performing an eigeadecomposition of R, we have that

RP = EAPPEt, (2.24)

where E is the corresponding eigetivector niatri. and

App = diag [A,,..., ALl

Using the measurement model we obtain

App = EtRppE = E t (D()R,D t (r))E 4 EtR,,E. (2.25)

If we further assume that E is i.i.d. (independent and idtjtically distributed), then

R_ = (TI and therefore it follows that

A,, = A,, + c2I, (2.26)

orAi 0 [i o' o1
[1' AN A ie CN +](2.27)

0. AN A'0 A . +,,

giving the eigenvalues

Ai +a 2 , 1<i<N (2.28)a 2, N < i<L.

It is interesting to note that integrating the hermitian product of Eq. (2.21), and using the
orthogonality property Eq. (2.10) of the modal functions, we have

Rp j popp dz = D po t dz D' + R .

and the signal term can be expressed as Y- ,3d(,)d(K) with 0- representing
modal power. Here Ro, is real and the range can be obtained directly from diagonals.

-8-
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This relation implies the existence of two subspaces:

(i) The signal subspace spanned by the eigenvectors (modal functions) associated
with the N largest eigenvalues of Rpp.

(ii) The noise subspace spanned by the eigenvectors associated with the L - N
smallest eigenvalues of Rpp.

Investigating the noise subspace further we see that [12, 13)

(R~p - 0,
2
I)e = 0 for i = N + 1...., L, (2.29)

or using Eq. (2.22) with R, = T2 I, we have that

(D(r)R6,Dt(r) e = Q for i = N + 1 (2.30)

where e, is the ith vector of E.

Equation (2.30) implies that the eigenvectors associated with the noise subspace are
orthogonal to the signal subspace. This can be seen by assuming D(r) is full rank
and R¢, is invertible. It then follows that

Dt(r_)e, = Q for i= N+ 1. L, (2.31)

or equivalently, using Eq. (2.20), we have

[dt().. dt(N)e = 0

or
_d

t
(K)=0 for 1=1,....N and i=N+,. L, (2.32)

which shows the orthogonality of the signal and noise subspaces. Following John-
son [13] we define the eigenvector constraint matrix as

L ~ ~
CEV F, f- e = [E-N+1. L] eL  (2.33)

L=~ .

But since 4t =Qfor I= N + 1_ .. , L andi= 1 . N, then premultiplying byK
and summing over I we have

Y_ . = CEv = C for i = 1., N. (2.34)

-9-
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Since { } are basis vectors spanning the signal subspace and (d()} lie within this

space, we have
CEVd(Ki) = Q for i = 1- ... N, (2.35)

which is the fundamental property of all eigenvector techniques. This completes

the analysis of the propagation and measurement models used in this study; next

we use these ideas to develop techniques to identify or estimate the required model

parameters from noisy data.

- 10-
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3. Processor design

[i this section we discuss the development of a processor designed to extract parani-
eters of the acoustic propagation model from noisy measurement data. To motivate
the approach we reconsider the propagation model of Eq. (2.18). The directional
information and subsequent range information about the location of the source is
contained in the wavenumbers and therefore in the phase of the measured data,
since the modal functions are real. In fact, we can interpret the field at the array as
being composed of a superposition of plane waves f!3-1 emanating from the saine
location and impinging upon the horizontal array as depicted in Fig. 2. Therefore
the goal is to develop a processor to estimate the horizontal wavenumbers {K,(o)}
from the pressure measurement and then utilize them to estimate the range.

SOURCE

L 1 5 3 2 1

Fig. 2. Modal function plane wave-decomposition
model. The modal wave numbers can be envi-

sioned as arriving from a fictitious point source
radiating plane waves with equal wavelengths but
different angles.

We begin our development of the processor by first examining the idea of direc-
tional constraints and then design an optimal-constrained processor to estimate the
direction-of-arrival or wavenumbers of the modal functions 0_(z). Before we state
the problem let us recall that the array pattern or spatial frequency response of an
array is defined by

L

A(,) Z a e-j (,c), (3.1)
i=1I

-11--
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where x is the wavenumber vector, r i is the spatial position vector of the ith sensor,
a is the weight vector and d is the direction vector.

I Ising this definition, we can develop directional constraints in terms of wavenumber
t by constraining the gain to unity in the desired direction, i.e.

A(Ka) = a
t
di(x) = 1. (3.2)

A constrained optimal technique requires that we select a set of weights, say {wi}, to
minimize the acoustical output power in every direction except that of the constraint
and satisfy

Inin)Rpw

such that
_t ,,)= 1.

Minimization of the augmented cost function

nin.J = wtRPPw + (l - uwtd,(K))

leads to the mininmum variance distortionless response (MVDR) solution for power
[8], which is given by

PMVDR(i) = dj()RI-'d,(K)" (3.3)

In the eigen-decomposition approach, the directional constraint equation is chosen
to be

w_ C E V d i, ) = ,(3 .4 )

and therefore, the optimal-constrained processor must minimize:
min _J = wtRpPW +3 fl1- wtCtvi).

Using the chain-rule' of vector calculus we have

V J = 2RP!w - OCEvdi(K) = 0

or solving for w we obtain

1L = 1/R 1C
2 -PP C vd,(K)" (3.5)

The chain-rule for a, b, n-vectors is given by Va'b = (Va')b + (Vk')a_ where V is the

gradient n-vector.

- 12-
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Taking the hermitian transpose and substituting it into the constraint equation, we
have

2
d!(K)CvR'CEvd-(K)

which gives the optimal weight vector as

R- Cvd()
wPt = P()CEvR Cvd(K) (3.6)

Substituting this expression into the corresponding cost function we have the mini-
mun power as

Jn, n -tptR P.t

R-pc t t -1 tvi~, \;p PPC
dt (.) CEv R Cv K -()"

Or letting P(i) = Jmih we have

-CE( aCv R5,)C' d~ (K) ) P'~ -'Z x) CFvR-1'C, j)

Cancelling the scalars in numerator and denominator yields

P(i))= , 1 , . (3.8)-di( )CEVRRppC'v-(

We can simplify these expressions further by using 'he spectral decomposition of
R,,, i.e.

L
p Z ,lt

i=1

which gives

1 -e t (3.9)

Therefore substituting for R-' we have

t=1- 13 -
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and from the orthogonality of the noise eigenvectors to the signal subspace we have

L L

CEv R-.Cv,== ," . , (.10)
a=1=N+

since CFve = 0 fori= i,..., N.

We now define the notation
C=V ENA 1  (3.11)

, V,- , - C) = ELNAL_'N FLN,

where
EL-N = 'Ll,

A-N = diag{N 'L] = -IL-N"

The optimal weighting vector can be written as

AL-_ Et_ di(K)
AL-NE L ?(e) (3.12)

-Pt d,(K)ELNAL1.NEt Nd,(h)

and the corresponding power is

I
PEv(i) = 1-A Et d (3.13)

4'!( )EL-NAL_ NELNdK)

which possesses the desirable property that when d is at a mode the denominator
approaches zero, i.e.

d(K)EL-NALNE' Ndi(K)=.(n 0 :> PEv(i) - OO.

Before we close this discussion we should mention that the dimension of the signal
subspace N can be estimated using the Akaike Information Criterion (AIC) or the
related Minimum Data Length (MDL) description given by [14]:

fL
MDL(N) = -Mln ( - 'N+l AiL -

N + IN(2L - N)lnM, (3.14)

where N is the dimension of the signal subspace, M is the number of data values of
P(i), A is the ith eigenvalue of R,, and L is the number of sensors.

This function will indicate a minimum at the true dimension of the signal subspace
(number of modes). We summarize the eigen-decomposition approach as follows (see
Appendix A for implementation):

- 14-
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(1) Estimate the covariance matrix, R., from acoustic pressure measurements.

(2) Perform a singular value decomposition (SVD) of Rp, 116).

(3) Using the MDL of Eq. (3.14) estimate the number of modes A'.

(4) Estimate the power PEv(i) of Eq. (3.13) using 4(-K) for various values of X.

(5) Choose the N peaks of PEV(i) and identify the corresponding wavenumnbers,
f ic(m)j,= 1. .

Once we have the wavenumber estimates, we can extract more information by using
the underlying propagation and measurement models. Since we have the estimates
[{fk,(m)}, NJ, we can construct the corresponding full-rank direction matrix and
solve the measurement model relation of Eq. (2.22) for Ro, i.e.

R - D#(k)[R,, - &
2 I)JD#(*k)], (3.15)

where D#(R) =[Dt(k)WD(R)]-I Dt(R)W,

D() =D()=,), m = . N,

and W is a weighting matrix.

The range can be estimated directly from the modal ccvariance matrix by first noting
that the complex vector of Eq. (2.19) can be written as

[ IN(r,, z) LN(r., z) 1 [aN(r., Z)ejl,(N),. 1

where a-(r,,z) = ,(z.) ,(z)eIo(") I/V (m)T,. The coefficients {a,,(r,,z)}
are real since the modal functions are real, therefore, the horizontal range can
be obtained directly from the phase of 4. Following the approach of Sullivan
and Rameau [9] we have

a2... alaNeJ(")-(N))]
R# E (3.17)

where the dependence of the a's has been supressed for clarity. Here we have used
the fact that the array is towed at a depth z = Za -: 0,(z.) = 0,(z)_.. Thus
the horizontal range can be determined from the phase-dependent terms of R, as
(see [3, 9] for details):

arg(R.(i, )) = (K,(i) - a,(l))r. - My, (3.18)

15-
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where the Mr term arises from the fact that arg(R#) is merely the principal value
of the phase, and the actual sign is unknown. Solving for r*, we have

arg(ROO(i, l)) + MX (3.19)ri ),(i) - K (l) +  ,(i) -K (I)" 3.9

As shown in [9], by introducing a third mode, two more solutions for the range can
be writt,. k,,j), r,(i, K). Counting all of the multiple solutions, sorting into range
bins and forming a range histogram H(r), we would expect the range associated
with the range bin containing the maximum number of solutions to be the estimated
range. The range estimation algorithm is as follows:

(1) From the estimates of [{k,(i) }, ], estimate Pko, from Eq. (3.15).

(2) Using the phase of Rk, estimate r, using Eq. (3.19), choosing
, = max H(r)I .

This completes the section on wavenunber and range estimation. It is interesting
to note that in this scheme, which we refer to as model-based processing with iden-
tification, the structure of the model is used implicitly to estimate the wavenumbers
and range; however, the modal functions, and hence the sound velocity profile, ocean
depth and ocean bottom properties, are not required explicitly, since the phase con-
tains all of the information essential for parameter estimation. To pot this another
way, we only assume the validity of the model but no a priori kr iwledge of the

model parameters is needed. A more detailed discussion of model-based techniques
with identification can be found in Candy [10]. In the next section we discuss the
performance of the estimators on simulated data.

- 16-
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4. Sinulatiou results

In this section we discuss the results of generating simulated data from an acoustic
propagation model and estimating the wavenumbers and range usirg the techniques
described in the previous section.

The acoustic propagation model utilizes the normal-node solutions to the cylindrical
wave equation given by Eq. (2.14). We utilized the SACLANTCEN normal-mode,
far-field acoustic simulator to produce pressure measurements for a source at a hor-
izontal range of 5 kiii and depth of 50 in in a shallow channel of 100 in depth. We
sinmulated the pressure measurements available from various horizontal arrays towed
at a depth of 50 m. The wavenumber estimation problem requires a high resolution
because of the nature of this problem. Since the modal solution can be decomposed
into a superposition of plane waves (Eq. 2.18) emanating from the same location,
but with different wavenumbers, the values of these wavenumbers are close to one
another. Thus we require a long array coupled with high resolution array signal

processing techniques.

It is well-known from classical antenna theory that the resolution of a linear array

in terms of wavenumber is approximately given by

II
= . (4.1)

(L- 1)A4

For our simulation we decided to investigate arrays of length L = 32, t4, 128, and

256 elements, with a spacing of 4 m corresponding to a wavelength of approximately
8 m at 190 Hz temporal frequency and respective wavenumber resolutions of AN
= 0.025, 0.0125, 0.00625, and 0.003125 r/m at a 10-dB signal-to-noise ratio. The

propagation conditions supported 9 modes.

For comparative purposes we used the conventional beamformer given by

PCONV(i) = 
d(-)R4 (), (4.2)

and the maximum entropy approach [8] given by

1

PMEM(i) = , (4.3)

where a is the vector of predictor coefficients obtained as solution to the Toeplitz

relation
e_ = PP (4.4)

-17 -



SACLANTCEN SR-1s8

for u a unit vector with unity in the ith row. We also used the MVDR and EV
estimators of the previous section given by

d! (K)EA-' Etd_.()

PEVi) 
t d4K)E NALINE Nd K). (4.6)

The results of these runs are shown for the case of L : 128 elements in Fig. 3.
Here we note the sidelobes inherent in the conventional beamformer as compared
to the constrained MVDR response. The high resolution EV and MEM techniques
appear to resolve even the lower frequency wavenumbers as well. We summarize the
estimates in Table 1 for the 128 and 256 elements arrays (only run for conventional
and MEM cases). In all cases we see that for the L = 256 element array the
conventional beanformer is able to 'resolve' 7 of the wavenumbers while the MEM
method resolves 9. As the length of the array is decreased, thereby decreasing
resolution, the number of wavenumbers resolved decreases to 6, even with the high-
resolution methods.

Table I
Wavenumber estimates

True CONV MEM CONV MLM MEM EV
(256) (256) (128) (128) (128) (128)

0.793250 0.800877 0.805002 0.808631 0.808677 0.805485 0.815943
0.791566 0.791996 0.798992 0.792760 0.792705 0.788470 0.793073
0.788795 0.780461 0.790002 0.776587 0.776541 0.776977 0.776473
0.784900 0.772512 0.780048 0.762246 0.762268 0.764956 0.762637
0.779818 0.765485 0.773006 0.749114 0.749017 0.752522 0.748516
0.773545 0.757621 0.766243 0.735531 0.735531 0.738516 0.735256
0.766049 0.750461 0.758968
0.757337 0.752065
0,747692 0.745875

The effect of array length on the wavenumber estimates is clearly demonstrated by
the conventional array response depicted in Fig. 4. The number of wavenumbers
resolved increases from 1 (L = 32) to 7 (L = 256).

The results of the range estimation using the exact and estin.ated wavenumbers can
now be investigated. Figures 5 to 8 show the results for various array lengths where
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a) b

o 5 , a e , ,s eeo ~ a *0 0 '5 0 0 0 75 0 o 00 e S

WAVENUMBER WAVENUMBER

C)

WAVENUBER WAVENUMBER

Fig. 3. Wavenumber estimates from 128 element horizontal array as es-

timated by four different beamforniers (a) Conventional, (b) Eipenvector,

(c) Maximum Likelihood (MVDR) and (d) Maximum Entropy The vahte

on the ordinates are arbitrary and the abscissa is in units of wavenurmbers.

the exact values of the wavenumbers, i.e. the values computed by SNAP, have been
used. These values are given in Table 1 under 'Due'. The four array sizes used
were L = 32, 64, 128 and 256 elements. Since the element spacing is 4 m, these
correspond respectively to absolute lengths of 124 m, 252 m and 1020 In.

There are two conclusions that can be drawn from these figures. First, that the
detection performance improves with i icreasing array size for the first two cases (as
can be seen in Figs. 5 and 6, which depict the cases for 32 and 64 elcments respec-
tively), but further increasing the array size causes a degradation in performance.
This is probably a numerical problem arising in the pseudo-inverse operation on the
direction matrix D of Fn (3 lt) The .... :d -n!si-n to be drawn is that there
is a strong positive bias in the range esimate that decreases with increasing array
length. In these figures and those to follow, four plots are shown, each identified by
a mode number. This number indicates the highest mode used. Thus MODES = 5
means that the first 5 modes were used. It can be seen that the performance is best
for the lower modes in nearly all cases.
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/ i \' j ' {

S 128t 0--1.lt

19',,| ' ~256 .... . .

Wavenumber

Fig. 4. Wavenumber estimation using conventional

beamformer for various array lengths. The numbers in

the legend indicate the number of elements, which in
all cases have a spacing of approximately half of the

acoustic wavelength.

- 20 -



SACLANTFEN SR-i38

-MODES= -7/

MODES= 6

MOP0ES= 5/

MODES:=, 4/

0 1 2 3 4 5 6 7 8 9 10

RANGE (K(M)
Fig. 5. Range estimator for L =32 elements using
exact wavenumbers.

LM.QD~qS 7 1

-MODES= 4-

RANGE (KM)
Fig. 6. Range estimator for L =64 elements using
exact wavenumbers.
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MODES=5

MODES= 5

0 1 2 3 4 5 6 7 8 9 10

RANGE (KM)
Fig. 7 Range estimator for L 128 elements
using exact wavenumbers.

MOE1

0

1MODES= 6

I-MOES= 4

RANGE (KM)
Fig. 8. Range estimator for L = 256 elements
using exact wavenumbers.
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For the case of the estimated wavenumbers, the performance, as would be expected,
was not as good as that for the exact wavenwnbers. In Fig. 9 the results using the
wavenumbers estimated with the conventional beamfornier using a 256-element ar-
ray are shown. These are the values found under the colunin labelled CONV (256)
in Table 1. Here, the bias is negative. It is presumed that this is a consequence
of measurement error in the wavenumber values. Figure 10 shows the results for
wavenumbers estimated with a maximum entropy beamformer (MEM (256) in Ta-
ble 1). the performance is similar to that of Fig. 9 but the bias is positive.

0

M ES

RANGE (KM)
Fig. 9. Range estimator for L = 256 elements
using wavenumbers estimated with the same array

using a conventional beamformer.

The performance for the wavenumbers estimated with shorter arrays was much

worse. Of the four cases tabulated in the last four columns of Fig. 3, i.e. those
for the 128-element array, only those wavenumbers using the conventional beam-
former give a meaningful result. This case is depicted in Fig. 11 where it can be
seen that, contrary to previous results, the higher order modes seem to yield better
results than the lower order modes.

The maximum likelihood and the eigenvector beamformers were not used in the
256-element case due to storage limitations,
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0 -

F0 g 10 2ag esiao fo 5 6 278 leen 0

RANGE (KM)
Fig, 1. Range estimator for L = 1256 elements
using waveninbers estimated with the same array
using a moaexiou nrop beamfor..
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5. Sumninury nnd reconismendations

A niodel-base l passive ranging scheme that requires no a1 priori kmwledge f lic

model parameters has been developed. The feasibility of the method was denton-
strated by use of synthetic data generated by a normal-miode model. Based on
the results of this work, the practical difficulties appear to be connected with the
measurement process itself. That is, to obtain accurate estimates of the modal
wavenumnbers a rather long array is necessary. In the present example an ocean
depth of 100 mn, which supports 9 modes at a frequency of 190 Hz, required an array
at least 500 in in length. This is an unacceptable requirement for a towed array inI
water with a depth of only 100 in. However, with a signal with sufficient stationarity
the wavenumber estimates could be made with a synthetic aperture traced out by a
much shorter array, or some other iodel-based techniques. In this regard it should
be pointed out that the process still can be carried out with a priori knowledge of
the wavenumbers. That is, if the wavenumbers are known explicitly the data from
the towed array will give a range estimate without such a prohibitive requirement
in length.

The intent of this work is to demonstrate that such a priori knowledge is not nec-
essary. It should also be pointed out that the horizontal array is not critical to the
qualitative aspects of this approach. It is necessary only to provide the sufficient
aperture for the wavenumber estimation. The vertical array cannot provide such
an aperture. Any attempt to increase the aperture of the vertical array by increas-
ing ocean depth or frequency is defeated by a concomitant increase in the number
of modes that are more closely spaced in wavenumber space, thus requiring a still
larger aperture.

The towed array offers an advantage over the vertical array in that the relative
element positions along the range are well-known. Studies have shown that these
techniques are quite sensitive to errors in the assumed element positions in the
direction of the source [91. Thus in the case of the vertical array any tilting or
curving of the array can produce unacceptable errors, whereas in the towed array
the spacings are mechanically fixed. However, it must be known a priori that the
array is 'pointed' at the source. This means that, unlike the case with the vertical
array, the source bearing must be determined before the range measurement is made.
Of course this could be done by first towing the array across the approximate bearing
of the source.

Although this study has demonstrated the feasibility of the technique, there are
still some questions that must be answered to establish its practicability. First,
the numerical problems that were encountered in this study must be better under-
stood. Secondly, a sensitivity study should be carried out in order to determine the
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limits on wavenumber accuracy, errors in vertical position of the elements, bearing
measurement accuracy and tow-speed accuracy and stability in the case of the syn-
thetic aperture approach. Third, studies using realistic noise fields should be carried
out. Finally, and obviously, given satisfactory results of these studies, the approach
should he experimentally verified.
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Append*x A

MATLAB implementation of the algoritlin

In this appendix we discuss the implenentation of the wavenunber estimator us-
ing MATLAB, a matrix language software package' and show the corresponding
MATLAB implementation of the eigen-decomposition approach of Sect. 3 of the main
text. As shown in the flow diagram of Fig. A.1, the steering matrix and complex
covariance matrix are calculated by separate routines and 'loaded' into the EIGSCAN
routine. Once this is accomplished the EIGEN routine performs the singular value
decomposition (SVD) of R, i.e.

RP - EV • SV EV'. (A.1)

Next the SIGSPACE routine estimates the dimension of the signal subspace N from
the eigenvalues (SV) of Rrr using the Akaik- Information Criterion (AIC) and the
Minimum Data Length (MDL) descriptions determined in the ORDER routines.
Once this is accomplished the power is estimated at vrious steering directions using
the EV routine and

PEv(i) = d. - (A.2)
- L L- N L - d-i

Next the N peaks are determined using PEAK and sorted using SORT according
to magnitude and wavenumber. Then the direction matrix is estimated, D(k) us-
ing DIRECTION, and the signal (modal) covariance matrix R., is estimated using
SIGCOV. This matrix is then passed to the range estimation procedure for further
processing.

Example A.1 Suppose we are given a linear array of seven elements excited by
sources at a= 12', 26', 530, 750 , 83 ° . The signal subspace is estimated as N = 5
from the MDL shown in Fig. A.2, along with the corresponding bearing estimate.
As can be seen in Fig. A.3, only the sources at 260, 530 and 830 are resolved. Next
the peaks are estimated, D(k) is constructed and R,_ is estimated.

In principle, the same approach was used to solve the passive localization problem.
For completeness we include the various MATLAB routines developed.

MOHLER, C. MATLAB User's Manual, University of New Mexico, May 1981.
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EIGSCAN, MAT

.steer... STEER [LjrteermlatI

LOAD - COVARLANCE ISXCI

R = E
t
SVE [EIG EN.MArlrd

Ns NSIGNAI. EIGEN IISAEAjre odrot

ER = EL-N, DECOMPOSITION_ SlGSEMATd ordeeMout

SVR - SVL-N. IREtMT AI/O

< N, 5 I, A - rE roclo ae.egce

_____ POWER 'isaot

- 4EL.,A',EL,L CALCULATION

SOURCE PEAK.MATI

NSDIRECTION IOt.AI

DETECTION

<cpna~s -ek Powe + diretion

T- DIRECTION .MATI

DIRECTION
DL-N, MATRIX ostctdi-etton matri

E8TMATE SIGNAL ISICCOV.MATI

R.*e D(R, &I)()
1 COVARIANCE

MATRIX

6Ri..

SAVE Run~
EIOEN Run

Fig. Al. MATLAB flow diagram of eigen-decompositiori approach for wave-

number estimator.
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zNs

(a)

(b)

N

Fig. A2. Estimation of the order of the signal subspace: (a) In-

formation criterion; (b) Minimum data length criterion.

\ 83'

_J/

REARING (degrees)

Fig. A3. Bearing estimation for the seven-element ar-
ray. Only the sources at 26', 530 and 830 are resolved.

- 31 -



SACLANTCEN SR-138

// E!GSCAN.MAT /

7/-----------------------------------------------------------------------------/
//Author: Vet-sion: Date:
// J.V. Candy .1July 21, 1987

/------------------------------------------------------------------------------

//This is a main routine to estimate the number of sources (nsignal) using /
//EIGENdecomposition techniques. It assumes a steering vector and /
/7corresponding measurement covariance matrix have been calculated /

/7 Variables: (INPUT) 7
7/steer.hex - L x nwnum steering/direction matrix -

/7wnum.dat . nwnusi-vector of steering angles 7
7/rpp.dat - L x L spatial covariance matrix R /
/7nelem - or L the number of array sensors 7
/7 . Time series data length

7/ Variables: (OUTPUT) /
7/p - nwnum-vector of beam power /
/7nsignal - dimension of the signal subspace 7
7/pmax - signal peak power estimates /
7/dir - estimated signal or source directions /
/7Rss - estimated signal variance matrix /

/Load the steering and covariance matrices

load) 'steer.hex' (1
load) 'wnum.dat';
load)' rpp.dat' 1;

/Add white noise to diagonals (20 db /10)

R - conjg(R);
rdiag - svd)R);
R - N + (rdiag(l)/l0)-EYE;
ip . 0;
nwnum - 251;
M 501;

-LL size(R);
nalpha -nwnum;
alpha -wnum;

/Perform the EIGEN-decompositions, estimate the dimension of the
7signal subspace (nsignal)

type-' Performing the Eigen-decomposition';
display) type)
exec('eigen.mat');

/Calculate the power at various steering directions

type-' Calculating the power vs. steering directions';
display) type)
FOR n-l:nwnum,

s-steer):,n);
exec('ev.mat');

END,

- 32 -



SACLANTCEN Sr-ia

//
// Output the results
//

type-' Power versus Direction Plot:';
display(type)
plot(wnum,p)
short e
print('eigscan.out',real(p));

//
//

// Detect the peaks and directions
//
//

type-' Peak Detection:';
display(type)
FOR n-l:nsignal,

pmax(n)--le+12;
dir(n) - 0;

END, .
//

diff(1)-p(l);
FOR n-l:nwnum-l,

exec('peak.mat');
END,

//
type-' Total number of peaks detected:';
displaytype)
ip,

//
// Set the dimension of the signal space to the number of detected
// peaks---or problems will evolve

nsignal-ip;
//
//

FOR n-l:ip,
exec('soct.mat'j;

END,.
//
// Output the source peaks and corresponding directions
//

type-' The source peaks and directions are:';
display(type)
<real(pmax),dir>,

//
//
// Estimate the direction matrix and signal covariance matrix
//

type-' The direction matrix is:';
display(type)
exec('direction.mat');

//
//

type-' The signal covariance matrix is:';
display(type)
exec('sigcov.mat');

//
// Save the results
//

save('eigen.run')
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//
//
// EIGEN.MAT
//
//
// This is the basic EIGEN-solution estimator for localization
// It requires svd(R) the covariance matrix R
//

// EV is the LxL matrix of eigenvectors of R
// SV is the LxL diagonal matrix of singular (eigenvalues) of R

/ SVI is the LxL diagonal matrix of singular (eigenvalues) of Rinv
// nsignal is the number of signals estimated
// nnoise is the dimension of noise subspace (nnoise-L-nsignal)
// EVR is the Lx nnoise "reduced" matrix of eigenvectors
// SVIR is the nnoise x nnoise "reduced" singular value matrix (Rnv)
1/ pev is the power at the given lucation

// s is the steering vector
//
//
// Perform the svd of R
//

<EV,SV,EVT> - SVD(R);
SVI - inv(SV);

//
//
// Estimate the dimension of the signal subspace to give "nsignal"
//

IF iorder - 1,
type- ' Performing signal space dimension estimates';
display(type)
exec('sigspace.mat');

ELSE; ..
nsignal-k;

//
// Set up the reduced submatrices
//

EVR - EV(:,nsignal+l:L);
SVIR - SVI(nsignal+l:L,nsignal+l:L);
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//
//
// SIGSPACE.MAT
//
//

// This procedure calculates the Akaike Information Criterion (AIC) and
,/ the Minimum Data Length (MDL) Criterion for order "k" and Automatically
// searches for the optimum order of the system or in this application
// the dimension of the signal space
// Variables: (INPUT)
//
// SV(i,i) - singular (eigen) values
// k - assumed order of no. of signals (nsignal)
// M - length of the times series data length
// L - length of the array or measurement vector
// Variables: (OUTPUT)
/
// nsignal - Order or dimension of signal subspace
// nnoise - Order or dimension of noise subspace
// AI(k) - Vector containing the AICs
// MD(k) - Vector containing the MDLs
/

//

aicmin - l.d+12;
mdlmin - l.d+12;
FOR kp-l:L, ..

k - kp - 1;
exec('order.mat');
AI(kp) - AIC;
MD(kp) - MDL;
order(kp)-k;
IF mdl - 0,

mdl-2d+12;
ELSE, ..
IF mdl>mdlmin;

exit, ..
ELSE mdlmin-mdl,
IF aic - 0, ..

aic-2d+12;
ELSE, ..
IF aic>aicmin,

exit, ..
ELSE aicmin-aic;

END;
//
//

// The 'optimal' order or dimension of the signal space is:
//

type-' The optimal order or signal space dimension is:';
display(type)
nsignal-k

1/
plot(order,AI)
plot(order,MD)

short e
print('order.out',<AI,MD>)

- 35 -
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//
//
// ORDER.MAT
//
//

// This procedure calculates the Akaike Information Criterion (AIC) and
// the Minimum Data Length (MDL) Criterion for order "k" of a system
// or in this application the dimension of the signal space
// Variables: (INPUT)
// SV(i,i) - singular (eigen) values

/ k assumed order of no. of signals (nsignal)
// M - length of the times series data length
/1 L - length of the array or measurement vector
// Variables: (OUTPUT)
/ AIC - Akaike Information Criterion of order k
// MDL - Minimum Data Length Criterion of order k
//
//

nlk - L-k;
sumsv - 0.0;
prdsv - 1.0;

FOR i-k+l:L,

prdsv - prdsv*SV(i,i);
sumsv - sumsv +SV(ii);

END,
sumsv - (sumsv/nlk)**nlk;
const - k*(2*L-k);
AIC - 0;
IF sumsv <> 0;

AIC - -M*lo (prdsv/sumsv);
ELSE;
AIC - AIC + const;
MDL (AIC-const) + 0.5*iog(M)*const;

// This is the Johnson EIGEN-solution estimator for location
// It requires svd(R) the covariance matrix R
I-
// EVR is the Lx nnoise "reduced" matrix of eigenvectors
// SVIR is the nnoise x nnoise "reduced" singular value matrix (Rinv)
// pev is the power at the given location
// s is the steering vector/1
//

pev-1/(S'*EVR*SVIR*EVR'*S);

- 36 -



SACLANTCEN SR-138

//
//
// PEAK.MAT
//
//
// This is a routine to obtain the peaks of a given signal using forward
// differences and checking for sign changes---it saves the peaks and
// corresponding abscissa values.
//
// Variables: (INPUT)
//
// p - calculated power from EV method
// alpha - wavenumber, bearing of steered beam
//
// (OUTPUT)
//
// peak - nsignal-vector of max power
// absic - nsignal-vector of directions (wvno, bearing)
//
//

diff(n+l)-real(p(n+l)-p(n));
IF diff(n+l)>O;

IF diff(n)<O;
ip - ip+l;

peak(ip)-p(n+l);
absic(ip)-alpha(n+l);

ELSE,
ELSE, ..
IF diff(n+l)<O;

IF diff(n)>O;
ip - ip+l;
peak(ip)-p(n+l);
absic(ip)-alpha(n+l);

ELSE,
ELSE,

/1
//
1/ SORT. MAT
//
//
// This is a routine to sort values of a function "p(n)" and store
// the "nsignal" largest in ascending order along with their
// corresponding abscissa values in dir.
/
/ Variables: (INPUT)

//
// peak - calculated power from EV method
// nsignal - dimension of signal subspace
// absic - wavenumber, bearing of steered beam//
// (OUTPUT)
// pmax - nsignal-vector of max power in ascend order
// dir - nsignal-vector of directions (wvno, bearing)
/-
/

il-0;
FOR i-l:nsignal,

IF peak(n) > pmax(i);
il -

ELSE,
END,
FOR k-l:il-l,

pmax(k)-pmax(k+l);
dir(k)-dir(k+l);

END, ..
IF il>O,

pmax(il)-peak(n);..
dir(il)-absic(n);

ELSE,
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//
//
// DIRECTION.MAT
//
//
// This procedure forms the direction matrix from identified direction
// vectors
//
// Variables: (INPUT)
// nsignal - dimension of signal subspace
// dir - est. directions (wavenumbers, angles, etc.)
// L - number of array sensor elements
// - array geometry for direction vector
// Variables: (OUTPUT)
// D - L x nsignal Direction Matrix

// Define constants:
//
//

nwnum - 251;
delta - 2.;
delwvno -(0.9-0.65)/nwnum;

//
FOR k-l:nsignal,
wvno-dir(k)*dewvno;

FOR i - l:L,
D(i,k) - exp (j*(i-l)*delta*wvno);

END,
END,
D

/
//
// SIGCOV.MAT//

i//
// This routine takes the estimated direction matrix and estimates
// the corresponding covariance matrix of the signal or sources
//
//
//
// Variables: (INPUT)
//

// nsignal - dimension of signal subspace
/ L - number of array sensor elements
// SV - L x L singular value matrix of R
// R L x L measurement covariance matrix
// D . nsignal x nsignal Direction matrix//-
// Variables: (OUTPUT)//
// Re . nsignal x nsignal covariance matrix
//

nnoise - L - nsignal;
nvar - 0.0;
FOR i-nsignal+l:L,

nvar-nvar+SV(i,i);
END, ..
nvar-nvar/nnoise;

~//
Dinv-pinv(D);
Rss-Dinv*(R-nvar*EYE)*Dinv';
Rss

//
// Analyze the results

// type-' The singular values and reciprocal condition number of Rss is:';
display(type)
svd(Rss)

rcond(Rss) 
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Initial Distribution for SR-138

Ministries of Defence SCNR Germany

jSPHQ Belgium 2 SCNR Greece

DND Canada 10 SCNR Italy1

CHOD Denmark 8 SCNR Netherlands1

MOD France 8 SCNR Norway1

MOD Germany 15 SCNR Portugal1

MOD Greece 11 SCNR Turkey1

MOD Italy 10 SCNR UK1

MO0D Netherlands 12 SCNR US 2

CHOD Norway 10 SECGEN Rep. SCNR 1

MO0D Portugal 2 NAMILCOM Rep. SCNR 1

MOD Spain 2

MO0D Turkey 5 National aison Officers

MO0D UK 20 NLO Canada 1

SECDEF US 68 NLO Denmark I

NLO Germany 1

AIATO AtfortfeSl NLO Italy 1

Defence Planning Committee 3 NLO UK 1

NAMILCOM 2 NLO US 1

SACLANT 3
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CINCNORTH 1 NLR Portugal 1

CINCSOUTI4 1 NLR Turkey 1
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COMSTRIKFORSOUTH 1

COMEDCENT 1

COMMARAIRMED 1
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SCNR for SACLAATCEN SACLANTCEN Library 10
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SCNR Canada 1

SCNR Denmark 1 Total number of copies 280


